Photoionization Spectra of CH₃I Perturbed by SF₆:
Electron Scattering in SF₆ Gas

C. M. Evans, R. Reininge and G. L. Findley

aDepartment of Chemistry, Northeast Louisiana University, Monroe, LA 71209
bCenter for Advanced Microstructures and Devices (CAMD) and
Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803

A photoionization study of CH₃I in the presence of SF₆ perturbers (up to the
perturber density 9.75 x 10¹⁹ cm⁻³) disclosed a red shift of autoionizing features that
depends linearly on the perturber number density. From the perturber induced
energy shifts of the CH₃I nd Rydbergs (n=9,10,11,12), the electron scattering length
of SF₆ was found to be A = -0.484 nm, which accords with previously reported (but
less precise) cross section data. An assessment is made of the validity of the impact
approximation used in the data analysis presented here.

I. INTRODUCTION

Perturber pressure effects on dopant Rydberg state energies and ionization energies
continue to generate interest as a means of measuring electron scattering lengths in the
perturber medium. Dopant/perturber systems have included CH₃I/rare gases [1-3], CH₃I/H₂
[3], CH₃I/alkanes [4], CH₃I/CO₂ [5], CH₃I/N₂ [6], benzene/rare gases [3,7], and benzene/H₂
[3]. Both photoabsorption and photoionization spectra have been measured. (At high perturber
number densities, however, photoabsorption measurements can become limited if both the
perturber and the dopant absorb in the same spectral region.) Thus, pressure effects have
been analyzed for discrete and autoionizing dopant Rydberg states [1-7] and for
subthreshold photoionization structure [5,6], and a synopsis of data pertaining to electron
scattering lengths has been given [8].

The extraction [1-8] of the electron scattering length in a perturber medium from the
density-dependent energy shift of dopant Rydberg states follows the theory by Fermi [9],
as modified by Alekseev and Sobel’man [10]. According to these authors [9,10], the total
energy shift Δ may be written as a sum of contributions

$$\Delta = \Delta_{sc} + \Delta_p ,$$ \hspace{1cm} (1)

where Δₜₙ, the “scattering shift,” is due to the interaction of the Rydberg electron with the
perturber molecule, while Δₚₜ, the “polarization shift,” results from the interaction of the
positive core of the Rydberg molecule with the perturber molecule. Δₚ can be calculated from
[2,10]

$$\Delta_p = -10.78 \left(\frac{1}{2} \frac{\alpha e^2}{\hbar v^{1/3}} \right)^{2/3} \rho .$$ \hspace{1cm} (2)

In this equation, ρ is the perturber number density, α is the polarizability of the perturber
molecule, e is the charge on the electron, h is the reduced Planck constant, and v is the relative
thermal velocity of the dopant and perturber molecules. Δₜₙ results from a measurement of Δ,
after calculating Δₚ. Then, the electron scattering length A of the perturber, which
gauges the electron-perturber interaction, can easily be determined from [9]

$$\Delta_{sc} = \left(\frac{2 \pi \hbar^2}{m} \right) A \rho ,$$ \hspace{1cm} (3)

where m is the mass of the electron.
In the present paper, we report photoionization spectra of CH$_3$I perturbed by up to 4 bar of SF$_6$. Since SF$_6$ absorbs weakly in the region of the first ($I_1 = I(^2E_{3/2}) = 9.54$ eV [2]) and second ($I_2 = I(^2E_{1/2}) = 10.16$ eV [2]) ionization energies of CH$_3$I, photoabsorption measurements are not possible except at very low SF$_6$ pressures. From the photoionization spectra, however, we were able to assign autoionizing n^d Rydberg states of CH$_3$I, and to follow the energy shifts of these states as a function of increasing SF$_6$ number density. By fitting the autoionizing state energies to the Rydberg equation, we were then able to determine I_2 as a function of increasing SF$_6$ number density. As described above, these shifts can then be used to extract the electron scattering length in SF$_6$.

SF$_6$ is of interest as a perturber medium because of the large size and high symmetry of this molecule. In addition, SF$_6$ has been the subject of studies of collisional effects (e.g., ℓ changing collisions) involving Rydberg atoms [11]. However, even though SF$_6$ is widely used as a high pressure electrical insulator, only one measurement [12] of the zero-energy scattering cross section σ is known to us, a value [12] was determined by very slow electron attachment cross section measurements in an electron beam collision chamber method. Since the zero-energy scattering cross section is related to the electron scattering length as $\sigma = 4\pi A^2$, the results presented here provide a much more precise determination of this parameter.

The experimental method employed in this paper provides an excellent means for the precise determination of the electron scattering length in gaseous perturbers [1-8]. Recently, Al-Omari, Reininger and Huber [13] have called into question the use of Eq. (2), which involves the impact approximation, in determining $\Delta\sigma$. In the discussion below, therefore, we provide a brief description of these authors’ [13] results as they pertain to our continued use of Eq. (2) in the following analysis.

II. EXPERIMENT

Details of the experimental cell have been published previously [14]. Briefly, photoionization spectra were measured with monochromatized synchrotron radiation (with a resolution of 0.13 nm, or ~ 10 meV in the spectral range of interest) that entered a copper experimental cell through a LiF window. The window had a thin (7 nm) coating of gold to act as an electrode. A second electrode (stainless steel) was placed parallel to the window with a spacing of 1.05 mm. The cell was connected to a cryostat and heater system allowing the temperature to be controlled to within 1K. The applied electric field was 100V, with the negative electrode being the LiF window. (The reported spectra are current saturated, which was verified by measuring selected spectra at different electric field strengths.)

CH$_3$I (Aldrich Chemical Company, 99%) and SF$_6$ (Matheson Gas Products, 99.996%) were used without further purification. The gas handling system has been described previously, as well as the procedures employed to ensure a homogeneous mixing of CH$_3$I with SF$_6$ [4].

The intensity of the synchrotron radiation exiting the monochromator was monitored by measuring the photoemission current from a metallic grid intercepting the beam prior to the experimental cell. All photoionization spectra are normalized to this current. Photocurrents within the cell were of the order of 10^{-10} A.

III. RESULTS AND DISCUSSION

Photoionization spectra of CH$_3$I and CH$_3$I doped into varying number densities of SF$_6$ are presented in Fig. 1 in the autoionizing region ($I_1 < h\nu < I_2$) of CH$_3$I. Energy positions of a number of n^d states for selected perturber number densities ρ are given in Table I, as well as the values of I_2 extracted from a fit of the assigned spectra to the Rydberg equation. A plot of n^d energies and I_2 as a function of perturber number density [cf. Eqs. (1-3)] is
shown in Fig. 2, where the red shift of all spectral features is readily apparent. Fig. 2 demonstrates that the peak positions depend linearly on the perturber number density, and that the resulting linear fits (obtained by regression analysis) are essentially parallel to one another.

Since the slopes of the straight lines of Fig. 2 are essentially equal, one may assume that the average slope (-24.72 x 10^{-23} eV cm^{3}) closely approximates the asymptotic shift rate of the Rydberg series. Using the value [15] \(\alpha = 6.54 \times 10^{-24} \text{ cm}^3 \) for SF\(_6\), one finds from Eqs. (1-3) an electron scattering length for SF\(_6\) of \(A = -0.484 \) nm. Since the zero-energy scattering cross section \(\sigma \) is given by

\[\sigma = 4 \pi A^2, \quad (4) \]

we have \(\sigma = 2.94 \times 10^{-14} \text{ cm}^2 \) for SF\(_6\). This should be compared to the value \(\sigma = 2 \times 10^{-14} \text{ cm}^2 \) determined by very slow electron attachment cross section measurements in an electron beam collision chamber method [12]. To our best knowledge, this is the first determination of the electron scattering length in SF\(_6\) using high-n Rydberg states. Eq. (1) is an expression of the statistical independence of Rydberg electron scattering and core ion scattering off of the perturber atoms or molecules for high-n Rydberg states [2,9,10,16]. Eq. (2), however, also requires the validity of the impact approximation, which assumes that the time between core ion/perturber collisions is long in comparison to the collision time [2,10,16]. At high densities, the impact approximation fails [16,17].

![Photoionization spectra](image-url)

Fig. 1. Photoionization spectra (T=27°C) of pure CH\(_3\)I (0.1 mbar) and CH\(_3\)I (5 mbar) doped into varying number densities (10^{19} \text{ cm}^{-3}) of SF\(_6\): a, 0.12; b, 1.97; c, 5.02; d, 9.75.

TABLE I. nd' and I\(_1\) = I (\(^3 \text{E}_{1/2} \)) photoionization energies (eV) of CH\(_3\)I in selected number densities \(\rho \) (10^{19} \text{ cm}^{-3}) of SF\(_6\).

<table>
<thead>
<tr>
<th>(\rho)</th>
<th>9d'</th>
<th>10d'</th>
<th>11d'</th>
<th>12d'</th>
<th>I(_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.96</td>
<td>9.867</td>
<td>9.937</td>
<td>9.988</td>
<td>10.022</td>
<td>10.162</td>
</tr>
</tbody>
</table>

Fermi [10] originally estimated the polarization shift by assuming an \(R^{-4} \) interaction between the core ion and an individual perturber atom or molecule. For high-n Rydbergs and high density, Fermi then averaged this polarization potential by integrating over \(R \) (with a lower limit given by the Wigner-Seitz
Fig. 2. Energy shifts of nd Rydberg states of CH₃I as a function of SF₆ number density. The fitted ionization energy I₂ is denoted 2E₁/₂. All straight lines result from a linear regression analysis.

radius) to find [2,9]

\[\Delta_p = -20.3 \left(\frac{\alpha e^2}{2} \right) \rho^{4/3}. \quad (5) \]

Recently, Al-Omari, Reininger and Huber [13] calculated the polarization energy distribution P(W) of impurity molecules in dense gases using a static approximation. In the infinite temperature limit, these authors derived an approximate expression for P(W) which has a maximum at

\[W_M = -18.9 \left(\frac{\alpha e^2}{2} \right) \rho^{4/3}, \quad (6) \]

which is essentially the Fermi result but without the high density restriction. They [13] also found that their high temperature expression for P(W) compared favorably to finite-temperature Monte Carlo calculations for NO in Ar [18], and they concluded that their results should remain quantitatively valid for \(\rho \leq 1.6 \times 10^{22} \text{ cm}^{-3} \).

If one assumes that the maximum in P(W) gives the polarization shift, Eq. (1) becomes

\[\Delta = \left(\frac{2\pi \hbar^2}{m} \right) A \rho - 18.9 \left(\frac{\alpha e^2}{2} \right) \rho^{4/3} \quad (7) \]

as opposed to the impact approximation result described above, namely

\[\Delta = \left(\frac{2\pi \hbar^2}{m} \right) A \rho - 10.78 \left(\frac{\alpha e^2}{2} \right)^{2/3} (\hbar \nu)^{1/3} \rho. \quad (8) \]

A nonlinear least-squares fit of Eq. (7) to the present SF₆ data yields the value \(A = -0.426 \text{ nm} \), which is within approximately 10% of the value found from the fit to Eq. (8) [i.e., \(A = -0.484 \text{ nm} \)]. Clearly, a larger density range than that provided here for SF₆ is required in order to assess the relative applicability of Eqs. (7 and 8). Such a range is provided by data given in [2] for the system CH₃I/Ar.

In Fig. 3 we have plotted the shift [2] in the vertical ionization energy I₁ of CH₃I versus Ar number density \(\rho \), as determined from the measured shifts in the energy positions of high-n Rydberg states. We have also plotted the results of a nonlinear least-squares fit to Eq. (7) and a linear least-squares fit to Eq. (8), yielding scattering lengths of \(A = -0.061 \text{ nm} \) [Eq. (7)] and \(A = -0.091 \text{ nm} \) [Eq. (8)] for this data set. While both Eqs. (7 and 8) are within the error bars of Fig. 3, the scattering lengths differ by more than 30% from one another. Moreover, the scattering length of Eq. (8) compares favorably to the value \(A = -0.089 \text{ nm} \) determined by the electron swarm method [19].

From Fig. 3 we conclude that Eq. (8) provides a better description of the energy shift in the low density region than does Eq. (7), and that we remain justified in our continued use of Eq. (8) in the analysis of the SF₆ data presented.
Fig. 3. Shift in the first vertical ionization energy of CH₃I in varying number densities of Ar. •, data from [2]; —, nonlinear least-squares fit to Eq. (7); ——, linear least-squares fit to Eq. (8). See text for discussion.

In summary, we have presented the first determination of the electron scattering length in SF₆ using high-n Rydberg states, and have provided an analysis supporting the continued use of the impact approximation for the polarization energy [i.e., Eqs. (2) and (8)] in the extraction of this scattering length. Since the use of dopant Rydberg energy shift in perturbed photoionization spectra as a means of determining scattering lengths is relatively new, we have summarized in Table II recent data on total shift rates and electron scattering lengths for various perturbers. Clearly, the largest scattering length so far measured by this method is that for SF₆.

TABLE II. Total shift rates $\Delta\rho$ and scattering lengths A [from Eq. (8)] determined by means of photoionized Rydberg lines: AI, in the autoionization region; ST, in the subthreshold region.

<table>
<thead>
<tr>
<th>Gas</th>
<th>$\Delta\rho$ (10⁻²³ eV cm³)</th>
<th>A (nm)</th>
<th>Region</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>N₂</td>
<td>0.0</td>
<td>0.019</td>
<td>AI</td>
<td>a</td>
</tr>
<tr>
<td>Ar</td>
<td>-4.75</td>
<td>-0.082</td>
<td>AI</td>
<td>b</td>
</tr>
<tr>
<td>CH₃</td>
<td>-7.86</td>
<td>-0.138</td>
<td>AI</td>
<td>c</td>
</tr>
<tr>
<td>C₂H₆</td>
<td>-10.05</td>
<td>-0.176</td>
<td>AI</td>
<td>c</td>
</tr>
<tr>
<td>CO₂</td>
<td>-11.8</td>
<td>-0.224</td>
<td>ST</td>
<td>d</td>
</tr>
<tr>
<td>C₂H₈</td>
<td>-12.93</td>
<td>-0.228</td>
<td>AI</td>
<td>c</td>
</tr>
<tr>
<td>Xe</td>
<td>-16.8</td>
<td>-0.324</td>
<td>ST</td>
<td>e</td>
</tr>
<tr>
<td>SF₆</td>
<td>-24.27</td>
<td>-0.484</td>
<td>AI</td>
<td>This work</td>
</tr>
</tbody>
</table>

ACKNOWLEDGMENTS

This work was carried out at the University of Wisconsin Synchrotron Radiation Center (NSF DMR 95-31009) and was supported by grants from the National Science Foundation (CHE-9506508) and from the Louisiana Board of Regents Support Fund (LEQSF (1997-00)-RD-A-14).